Structure and Energetics of [4.4.4.4]Fenestrane

Jerome M. Schulman,* Michael L. Sabio, and Raymond L. Disch
Contribution from the Department of Chemistry, City University of New York, Queens College, Flushing, New York 11367. Received May 28, 1982

Abstract

The energetics of the $D_{2 d}$ and $C_{4 v}$ forms of [4.4.4.4] fenestrane were explored by ab initio calculation. Geometries were optimized in the STO-3G basis set and relative energies, heats of formation and strain energies were calculated at the SCF level in the $6-31 G^{*}$ basis set and to second order in electron correlation in the 4-31G basis set. The strain energy of the more stable $D_{2 d}$ form is found to be $160 \mathrm{kcal} / \mathrm{mol}$. The $C_{4 v}$ form is estimated to be less stable than the $D_{2 d}$ form by 48.3 $\mathrm{kcal} / \mathrm{mol}$.

Introduction

A highly strained organic molecule of synthetic ${ }^{1}$ and theoretical ${ }^{2,3}$ interest is tetracyclo[3.3.1. $0^{3,9} .0^{7,9}$]nonane, also known as [4.4.4.4]fenestrane. Liebman and Greenberg ${ }^{2}$ speculated that the most stable conformer would be IA; on the other hand, MIN-

IA

IB
$\mathrm{DO} / 3^{3}$ and MNDO^{4} calculations predicted the isomer IB to be more stable than IA by 28.5 and $50.8 \mathrm{kcal} / \mathrm{mol}$, respectively. In order to obtain further insight into the energetics of this system, we have carried out ab initio molecular orbital calculations for both IA and IB: geometry optimization in the STO-3G basis ${ }^{5 \mathrm{a}}$ with respect to all parameters followed by calculation of the energies of the optimized structures in the 4-31G basis ${ }^{56}$ accurate to second order in electron correlation (RMP2) ${ }^{6,7}$ (within the frozen-core approximation). In order to assess the role of d-orbitals on carbon we have also performed $6-31 \mathrm{G}^{*}$ basis set ${ }^{5 \mathrm{c}}$ calculations at these same geometries. Geometry searches in the STO-3G basis were carried out using the program GAUSSIAN $80 ;{ }^{8}$ all other results were obtained by means of optimized machine-dependent programs developed by us.

Results and Discussion

The optimized geometric parameters of IA and IB are given in Table I. For IA a structure of C_{40} symmetry was found, the angles $\mathrm{C}_{1} \mathrm{C}_{9} \mathrm{C}_{5}$ and $\mathrm{C}_{1} \mathrm{C}_{9} \mathrm{C}_{7}$ being 118.9° and 75.0°, respectively. The latter is remarkably small for a cyclobutane CCC angle. MINDO/3 furnishes 128° for $\mathrm{C}_{1} \mathrm{C}_{9} \mathrm{C}_{5}$. The cyclobutane rings are puckered toward the pyramidal carbon with a dihedral angle $\mathrm{C}_{1} \mathrm{C}_{9} \mathrm{C}_{7} \mathrm{C}_{8}$ equal to -1.5°.

For IB a structure of $D_{2 d}$ symmetry was found (Figure 1). The exterior angle $\mathrm{C}_{1} \mathrm{C}_{9} \mathrm{C}_{5}$ is 131.7° and the interior angle $\mathrm{C}_{1} \mathrm{C}_{9} \mathrm{C}_{7}$

[^0]Table I. Bond Lengths $(\AA$) and Bond Angles (deg) for Fenestranes (IA and IB) Optimized in the STO-3G Basis Set

bond length a	IA	IB
$\mathrm{C}_{1} \mathrm{C}_{9}$	1.728	1.487
$\mathrm{C}_{1} \mathrm{C}_{8}$	1.529	1.603
$\mathrm{C}_{1} \mathrm{H}_{1}$	1.088	1.083
$\mathrm{C}_{8} \mathrm{H}_{\mathrm{a}}$	1.085	1.089
$\mathrm{C}_{8} \mathrm{H}_{\mathrm{b}}$	1.085	1.089
bond angle	IA	IB
$\mathrm{C}_{1} \mathrm{C}_{9} \mathrm{C}_{5}$	118.9	131.7
$\mathrm{C}_{1} \mathrm{C}_{9} \mathrm{C}_{7}$	75.0	99.6
$\mathrm{C}_{9} \mathrm{C}_{1} \mathrm{C}_{8}$	98.9	85.1
$\mathrm{C}_{1} \mathrm{C}_{8} \mathrm{C}_{7}$	87.0	90.3
$\mathrm{H}_{1} \mathrm{C}_{1} \mathrm{C}_{9}$	105.3	119.7
$\mathrm{H}_{\mathrm{a}} \mathrm{C}_{8} \mathrm{C}_{1}$	115.3	111.3
$\mathrm{H}_{\mathrm{b}} \mathrm{C}_{8} \mathrm{C}_{1}$	114.3	117.7

${ }^{a} \mathrm{H}_{1}$ is the hydrogen on C_{1}. In IA, the cyclobutane rings are puckered, with the methylene carbon atoms displaced toward C_{9}. H_{a} and H_{b} are the hydrogens on C_{8} pointing away from and toward C_{9}, respectively. In $\mathrm{IB}, \mathrm{H}_{\mathrm{a}}$ and H_{b} are methylene hydrogens with dihedral angles $\mathrm{H}_{\mathrm{a}} \mathrm{C}_{8} \mathrm{C}_{9} \mathrm{C}_{1}=-85.0^{\circ}$ and $\mathrm{H}_{\mathrm{b}} \mathrm{C}_{8} \mathrm{C}_{9} \mathrm{C}_{1}=$ $+95.0^{\circ}$, respectively.

Table II. Ab Initio Energies of Fenestranes IA and IB, Cyclobutane, Cubane, and Neopentane

molecule	energy, au			
	$\begin{aligned} & \hline \text { STO-3G } \\ & \text { (SCF) } \end{aligned}$	$\begin{aligned} & 4-31 G \\ & (S C F) \end{aligned}$	$\begin{gathered} 4-31 \mathrm{G} \\ (\mathrm{RMP} 2) \end{gathered}$	$\begin{gathered} 6-31 G^{*} \\ (S C F) \end{gathered}$
$\begin{aligned} & \text { fene- } \\ & \text { strane (IA) } \end{aligned}$	-343.3205	-346.9396	-347.7747	-347.4706
```fene- strane (IB)a```	-343.4657	-347.0346	-347.8537	-347.5635
cyclobutane ${ }^{\text {b }}$		-155.8661	$-156.2295$	-1560970
cubane ${ }^{\text {b }}$		-306.9289	-307.6211	
neopentane ${ }^{\text {a }}$	-194.0468	-196.0510		

${ }^{a}$ Optimized geometry in STO-3G; $T_{d}$ symmetry was assumed for neopentane. ${ }^{b}$ Optimized geometry in 4-31G.
is $99.6^{\circ}$. The central carbon and the four methylene carbon atoms are coplanar. There is no puckering of the cyclobutane rings. However, each set of methylene protons in IB is slightly twisted, such that the angle between planes $\mathrm{HC}_{8} \mathrm{H}$ and $\mathrm{C}_{1} \mathrm{C}_{8} \mathrm{C}_{7}$ differs from a right angle by ca. $5^{\circ}$. This twisting brings the methylene protons closer to their cis neighboring methine protons and farther from their neighboring cis carbon-carbon bonds.

The small degree of ring puckering found in IA and its absence in IB are consistent with the slight puckering of cis-fused cyclobutanes: $8.1^{\circ}$ in bicyclo[2.2.0] hexane, ${ }^{10}$ and essentially zero in the planar central cyclobutane ring of the tricyclo[4.2.0.0 ${ }^{1,4}$ ]octane derivative reported by Wiberg et al. ${ }^{11}$ The latter is the tricyclic analogue of fenestrane IB. The CC bond lengths of IB are $\mathrm{C}_{1} \mathrm{C}_{9}$

[^1]

Flgure 1. Perspective drawing of fenestrane (IB) in the STO-3G geometry.
$=1.487 \AA$ and $C_{1} \mathrm{C}_{8}=1.603 \AA$. These are rather different from the corresponding lengths found in the tricyclo[4.2.0.0 ${ }^{1,4}$ ]octane: $1.552-1.571 \AA$ and $1.525-1.534 \AA$, respectively. A $4-31 \mathrm{G} \mathrm{SCF}$ calculation using $1.545 \AA$ for both CC bond lengths in IB gave an energy some $20 \mathrm{kcal} / \mathrm{mol}$ higher than the STO-3G mini-mum-energy structure.

Energies in the 4-31G basis set show IB to be $59.6 \mathrm{kcal} / \mathrm{mol}$ more stable than IA; when the correlation correction is included, the difference drops to $49.6 \mathrm{kcal} / \mathrm{mol}$. The effect of including d-orbitals on the nine carbons of each isomer is apparently negligible since the $6-31 G^{*}$ SCF energy difference decreased by only $1.3 \mathrm{kcal} / \mathrm{mol}$. (Relevant energies are given in Table II.) Thus, the best estimate is that IB is more stable than IA by 48.3 $\mathrm{kcal} / \mathrm{mol}$. This is in good agreement with the MNDO result, 50.8 $\mathrm{kcal} / \mathrm{mol}$.

An isodesmic reaction for which all carbon atoms are in four-membered rings can be used to estimate $\Delta H_{f}(0 \mathrm{~K})$ for IB

$$
\begin{equation*}
(3 / 4)(\text { cubane })+(3 / 4)(\text { cyclobutane }) \rightarrow(\text { fenestrane }) \tag{1}
\end{equation*}
$$

It was necessary to obtain the RMP2 energies of cyclobutane and cubane in the 4-31G basis for the accurate evaluation of $\Delta H$ of reaction 1. Minimization of the 4-31G energy of cubane with respect to the two independent bond lengths in $O_{h}$ symmetry yields $R_{\mathrm{CC}}=1.573 \AA$ and $R_{\mathrm{CH}}=1.075 \AA$. For cyclobutane we used the $4-31 \mathrm{G}$ geometry given by Newton ${ }^{12}$ and computed the RMP2 energy (Table II). The heats of reaction 1 at the SCF and RMP2 levels of approximation are 38.7 and $21.5 \mathrm{kcal} / \mathrm{mol}$, respectively. Using the known $\Delta H_{\mathrm{f}}(0 \mathrm{~K})$ of cyclobutane and cubane ${ }^{12}$ and ignoring a net zero-point energy correction, $\Delta H_{\mathrm{f}}(0 \mathrm{~K})$ for fenestrane is found to be 165 (SCF) and 148 (RMP2) $\mathrm{kcal} / \mathrm{mol}$. The heat of formation of IB was also computed using the "homodesmotic" reaction 2 , in which the reactants and products
$($ neopentane $)+(4)($ isobutane $)+(4)($ cyclobutane $) \rightarrow$
$($ fenestrane, IB $)+(6)(n$-butane, trans $)+(2)($ ethane $)(2)$
contain equal numbers of $\mathrm{CH}_{3}, \mathrm{CH}_{2}$, and CH groups as well as quaternary carbons and four-membered rings. For this purpose we minimized the STO-3G energy of neopentane in $T_{d}$ symmetry, obtaining CC and CH bond lengths of 1.550 and $1.086 \AA$, respectively, and an HCH angle of $108.3^{\circ}$. Energies for this geometry are given in Table II. Using the $4-31 \mathrm{G}$ energies of neopentane, isobutane, ${ }^{13} n$-butane, ${ }^{13}$ cyclobutane, ${ }^{12}$ and ethane, ${ }^{12}$ the

[^2]heat of reaction 2 is found to be $69.6 \mathrm{kcal} / \mathrm{mol}$. The $\Delta H_{f}(0 \mathrm{~K})$ of IB found from this heat of reaction and the known heats of formation of reactants and products, corrected to 0 K and ignoring zero-point energy corrections, is $159 \mathrm{kcal} / \mathrm{mol}$. Since the $4-31 \mathrm{G}$ heats of formation of IB are within $6 \mathrm{kcal} / \mathrm{mol}$, there is essential agreement between the isodesmic and homodesmotic derived values. The best estimate of $\Delta H_{\mathrm{f}}(0 \mathrm{~K})$, including second-order correlation corrections, is $148 \mathrm{kcal} / \mathrm{mol}$ obtained from reaction 1. It is significantly larger than the 108.5 and $95.7 \mathrm{kcal} / \mathrm{mol}$ values furnished by MINDO/ $3^{3}$ and MNDO, ${ }^{4}$ respectively.

Franklin's group equivalents ${ }^{14}$ furnish $\Delta H_{f}(0 \mathrm{~K})=-12.2$ $\mathrm{kcal} / \mathrm{mol}$ for a hypothetical unstrained fenestrane. Thus, the strain energy of IB obtained in the present work is $160 \mathrm{kcal} / \mathrm{mol}$. This is in fair agreement with the molecular mechanics value, 183 $\mathrm{kcal} / \mathrm{mol}$, reported by Wiberg et al. ${ }^{11}$ It is noteworthy that the bond angles of fenestrane reported by these authors are within $2^{\circ}$ of the ab initio values obtained here. The strain energy of IA is $209 \mathrm{kcal} / \mathrm{mol}$.

While the strain energy of cubane, $155 \mathrm{kcal} / \mathrm{mol},{ }^{12}$ is ca. six times that of cyclobutane, $27 \mathrm{kcal} / \mathrm{mol}$, the strain energy of fenestrane is significantly greater than four times that of cyclobutane. Fenestrane is therefore much more strained (on a per-ring basis) than cubane. How much of that strain is attributable to bond-angle distortions at $\mathrm{C}_{9}$ ? A symmetrically distorted $D_{2 d}$ methane with the fenestrane $C_{9}$ bond angles has a $6-31 G^{*}$ energy only $20 \mathrm{kcal} / \mathrm{mol}$ greater than tetrahedral methane. (This value is similar to a $4-31 \mathrm{G}$ result obtained in a study of distorted methanes by Wiberg et al. ${ }^{15}$ ) For the analogue to IA, the situation is rather different. A $C_{4 v}$ methane with the bond angles of $\mathrm{C}_{9}$ in IA has a $6-31 \mathrm{G}^{*}$ distortion energy of $139 \mathrm{kcal} / \mathrm{mol}$ (in agreement with values obtained by Palalikit and Shavitt ${ }^{16}$ ). The difference in strain energies between the $C_{4 v}$ and $D_{2 d}$ methanes is $119 \mathrm{kcal} / \mathrm{mol}$, which far exceeds the $58.3 \mathrm{kcal} / \mathrm{mol}(\mathrm{SCF})$ found for the difference in energy between IA and IB. The extra stabilization of IA can be attributed to its unusual electronic structure, in which the four CC bonds are actually formed from three electron pairs, the other pair residing in a nonbonding $a_{1}$ orbital pointing away from the pyramid. This zwitterionic character of IA confers upon it an unusually large electric dipole moment for a hydrocarbon, $3.2 \mathrm{D}(4-3 \mathrm{IG})$. For a discussion of the relationship of this bonding scheme to that of the $\left(\mathrm{CH}_{5}\right)^{+}$ion, see ref 3 .

As a final remark, we point out that the 4-31G SCF energy of fenestrane having a square planar $\mathrm{C}_{9}$ is found to be ca. 130 $\mathrm{kcal} / \mathrm{mol}$ greater than that of IB; this is not surprising in view of the $168.3 \mathrm{kcal} / \mathrm{mol}$ distortion energy of $D_{4 h}$ methane in the 4-31G basis. ${ }^{16}$ Clearly, for distortions of the order of that found at $C_{9}$ of structure $I B$, the bond-angle strain of that atom does not make a dominant contribution to the total strain energy. Only when the distortions become much more pronounced, as in IA or square-planar fenestranes, is the effect of angle strain at the central carbon atom predominant.

Acknowledgment. This research was supported in part by Grant No. 13351 from the PSC-CUNY Research Award Program of the City University of New York and a grant of computing time from the CUNY Committee on Research Computing. A helpful discussion with Prof. W. F. Berkowitz is acknowledged.

Registry No. Fenestrane, 40220-30-2; cyclobutane, 287-23-0; cubane, 277-10-1; neopentane, 463-82-1.

[^3]
[^0]:    (1) Georgian, V.; Saltzman, M. Tetrahedron Lett. 1972, 4315.
    (2) Liebman, J. F.; Greenberg, A. Chem. Rev. 1976, 76, 346. See also Greenberg, A.; Liebman, J. F. "Strained Organic Molecules", Academic Press: New York, 1978; p 373.
    (3) Minkin, V. I.; Minyaev, R. M.; Natanzon, V. I. J. Org. Chem. USSR (Engl. Transl.) 1978, 14, 3.
    (4) Wurthwein, E-U; Chandreskhar, J.; Jemmis, E. D.; Schleyer, P. v. R. Tetrahedron Lett. 1981, 843; 1982, 3306.
    (5) (a) Hehre, W. J.; Stewart, R. F.; Pople, J. A. J. Chem. Phys. 1969, 51, 2657. (b) Ditchfield, R.; Hehre, W. J.; Pople, J. A. Ibid. 1971, 54, 724.
    (c) Hariharan, P. C.; Pople, J. A. Chem. Phys. Lett. 1972, 16, 217.
    (6) Moller, C.; Plesset, M. S. Phys. Rev. 1934, 46, 618.
    (7) Binkley, J. S.; Pople, J. A. Int. J. Quant. Chem. 1975, 9, 229.
    (8) Binkley, J. S.; Whiteside, R. A.; Krishnan, R.; Seeger, R.; DeFrees, D. J.; Schlegel, H. B.; Topiol, S.; Kahn, L. R.; Pople, J. A. Gaussian 80, Quantum Chemistry Program Exchange, Program Number 406.
    (9) Wiberg, K. B.; Wendoloski, J. J. (private communication). Prof. K. B. Wiberg has recently communicated to us the ab initio optimized geometries for IB using several basis sets ranging in size from STO-3G to $6-31 \mathrm{G}^{*}$. His STO-3G geometry is almost identical with that given in Table I; moreover, optimization at the $6-31 G^{*}$ level produces only slight changes from the STO-3G geometry.

[^1]:    (10) Anderson, B.; Srinivasan, R. Acta. Chem. Scand. 1972, 26, 3468.
    (11) Wiberg, K. B.; Olli, L. K.; Golembeski, N.; Adams, R. D. J. Am. Chem. Soc. 1980, 102, 7467.

[^2]:    (12) Newton, M. D. In "Modern Theoretical Chemistry"; Schaefer, H. F., III, Ed.; Plenum Press: New York, 1977; Vol. 4.
    (13) Hehre, W. J.; Pople, J. A. J. Am. Chem. Soc. 1975, 97, 6941.

[^3]:    (14) Franklin, J. L. Ind. Eng. Chem. 1949, 41, 1070.
    (15) Wiberg, K. B.; Ellison, G. B.; Wendoloski, J. J. J. Am. Chem. Soc. 1976, 98, 1212.
    (16) Shavitt, I., private communication.

